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We consider nonlinear interactions between two colliding laser beams in an electron plasma, accounting for
the relativistic electron mass increase in the laser fields and radiation pressure driven electron-acoustic �EA�
perturbations that are supported by hot and cold electrons. By using the hydrodynamic and Maxwell equations,
we obtain the relevant equations for nonlinearly coupled laser beams and EA perturbations. The coupled
equations are then Fourier analyzed to obtain a nonlinear dispersion relation. The latter is numerically solved
to show the existence of new classes of the parametric instabilities in the presence of two colliding laser beams
in a two-electron plasma. The dynamics of nonlinearly coupled laser beams in our electron plasma is also
investigated. The results should be useful in understanding the nonlinear propagation characteristics of multiple
electromagnetic beams in laser-produced plasmas as well as in space plasmas.
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I. INTRODUCTION

There has been a growing interest in studying nonlinear
interactions between intense electromagnetic beams and
plasmas that are composed of hot and cold electrons. Such
two-electron plasmas are encountered both in laboratories
�1,2� and in space �3�. In such plasmas, we have the possi-
bility of electron-acoustic waves �4� which can nonlinearly
interact with high-frequency waves. Some Cluster observa-
tions of high-frequency waves in the terrestrial foreshock
have been interpreted as the nonlinear decay of Langmuir
waves into ion-acoustic and electron-acoustic waves �5�. On
the other hand, interactions between a coherent single elec-
tromagnetic pulse and electron-acoustic waves can produce
interesting nonlinear effects �6–8� in a two-electron plasma.
In laboratory plasmas, the hot electron component is pro-
duced by collisionless heating involving the Raman back-
scattering instability �9�. Theoretical and simulation studies
have shown that we can have nonlinear interactions between
the laser light and kinetic structures and/or electron holes
�10–12� and beam-acoustic modes �13�. Furthermore, if the
amplitude of the laser light is large enough, we also have
new effects due to the relativistic electron mass increase in
the electromagnetic fields �14–20,24�. The importance of in-
terplay between the relativistic electron mass variation non-
linearity and the radiation pressure driven density fluctua-
tions has been recognized �14,15,21� in the context of
numerous parametric instabilities of a single laser beam in
plasmas.

The presence of multiple laser beams in a plasma can give
rise to a new set of interesting phenomena �22–25�. One of
the potential applications of two colliding laser beams in
plasmas is the excitation of large amplitude Langmuir waves,
which in turn accelerate electrons to ultrarelativistic speeds
�23�. The coupling between two electromagnetic waves in
plasmas can be described by a system of coupled nonlinear
Schrödinger equations that describe nonlinear interactions
between localized light �25,26� and Langmuir or ion-acoustic

waves. Laser beams that are copropagating at a small dis-
tance from each other sometimes spiral around each other
�27� or merge �28�. At relativistic intensities, laser beams can
give rise to fast plasma waves via higher-order nonlinearities
�22,23,29�, or via the beat wave excitation at frequencies
different from the electron plasma frequency �30�. Particle-
in-cell simulations �31� show that large-amplitude electron
plasma waves can be excited by colliding laser pulses, or by
two copropagating electromagnetic pulses where a long trail-
ing pulse is modulated efficiently by the periodic plasma
wake behind the heading short laser pulse �32�. The effects
on parametric instabilities of a partially incoherent pump
wave �with a distribution of wave modes� was investigated
both theoretically �33� and experimentally �34�, where it was
found that the effect of finite bandwidth is, in general, to
increase the instability thresholds and lower the growth rate.
The reason is that the pump energy is distributed over the
bandwidth of the pump, while only the energy within the
resonance width contributes to the instability.

In this paper we consider nonlinear interactions between
two colliding electromagnetic beams and a plasma that is
composed of immobile ions and inertialess hot electrons and
cold inertial electrons. We use the Maxwell and Poisson
equations, in conjunction with the hydrodynamic equations
for the electrons, to derive a set of three coupled equations
that show nonlinear couplings between two laser beams and
electron-acoustic �EA� perturbations that are supported by
two distinct groups of electrons in our plasma. In our inves-
tigation, we account for the combined action of the relativ-
istic electron mass increase in the electromagnetic fields, as
well as the electron density perturbation associated with EA
perturbations that are reinforced by the radiation pressure of
two laser beams. The coupled equations are then Fourier
analyzed to obtain a nonlinear dispersion relation that is ap-
propriate for investigating the parametric instabilities. The
nonlinear dispersion relation is numerically analyzed to dem-
onstrate the existence of new classes of parametric interac-
tions caused by two electromagnetic pump waves. We also
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numerically solve the coupled nonlinear equations to inves-
tigate the features of spatiotemporal evolution of nonlinearly
interacting laser beams and EA perturbations.

II. NONLINEAR MODEL EQUATIONS

Let us derive the set of equations that govern the dynam-
ics of two nonlinearly coupled laser beams and driven EA
perturbations in a two-electron plasma. At equilibrium, we
have ni0=n0=n0c+n0h, where ni0 is the equilibrium ion num-
ber density, and n0c and n0h are the number densities of the
cold and hot electron components, respectively. We will as-
sume that ions are immobile and homogeneously distributed.
In the presence of laser beams, the density and velocity per-
turbations of the cold electrons, supporting the EA perturba-
tions, are governed by the continuity equation

�nsc

�t
+ n0c� · vsc = 0, �1�

and the momentum equation

m
�vsc

�t
= e � �s −

m

2
� �v f

2� , �2�

where nsc��n0c� and vsc are the number density and velocity
perturbations, respectively, for the cold electrons, �s is the
electrostatic potential, m� �v f

2� denotes the radiation pres-
sure, v f is the electron quiver velocity in the laser fields, and
the angular brackets denote averaging over one laser light
period. The radiation pressure term comes from the averag-
ing of the advection and nonlinear Lorentz force terms over
one light period �see Ref. �15��. Specifically, in an unmagne-
tized plasma we used mŠv f ·�vf‹+ �e /c�Šv f �B‹ with v f

=eA /mc and B=��A to obtain the second term in the
right-hand side of Eq. �2�. Here, m and e are the electron
mass and the magnitude of the electron charge, respectively.

Since the phase velocity of the EA perturbations is much
smaller than the thermal speed of the hot electron compo-
nent, we obtain from the equation of motion

0 = e � �s − Th
�nsh

n0h
−

m

2
� �v f

2� , �3�

which gives

nsh = n0h� e�s

Th
−

m�v f
2�

2Th
� , �4�

where nsh ��n0h� is the small density perturbation and Th the
equilibrium temperature of the hot electrons. We have here
assumed that the background hot electrons are Boltzmann
distributed and that the electron distribution is not modified
significantly by the electrostatic waves. In the opposite case,
a kinetic treatment is needed �13�.

The electrostatic potential is obtained from the Poisson
equation

�2�s = 4�e�nsc + nsh� . �5�

Combining Eqs. �1�, �2�, �4�, and �5�, we have

	��2 − kDh
2 �

�2

�t2 + �pc
2 �2
�s =

m

2e
��pc

2 �2 − kDh
2 �2

�t2��v f
2� ,

�6�

where we have denoted �pc= �4�e2nc0 /m�1/2 and kDh

= �4�nh0e2 /Th�1/2. Equation �6� is the driven �by the radiation
pressure� EA perturbations. We see that the nonlinear cou-
pling between the latter and the laser beams occurs only
when the space charge electric field associated with the EA
perturbations is reinforced by the laser beam pressure.

We next derive the governing equation for intense laser
beams in a two-component electron plasma that supports the
EA perturbations. The circularly polarized laser beam propa-
gation is governed by the Maxwell equation

� � B = −
4�

c
�n0 + nsc + nsh�ev f +

1

c

�E

�t
. �7�

We now express the electromagnetic fields in terms of the
vector potential A as B=��A and E=−�1/c��A /�t. Since
�pe /�t=−eE, we have for the relativistic electron momentum
pe=eA /c. By using the definition pe=m�v f, where �= �1
−v f

2 /c2�−1/2 is the relativistic gamma factor, we have for cir-
cular polarized laser beams

v f =
eA

mc
�1 +

e2�A�2

m2c4 �−1/2

. �8�

For weakly relativistic electrons, i.e., e2 �A�2 /m2c4�1, we
can approximate Eq. �8� by

v f �
eA

mc
�1 −

e2�A�2

2m2c4� . �9�

With these prerequisites, and using Eq. �5� to reduce nsc and
nsh, Eq. �7� becomes

� �2

�t2 − c2�2�A +
�p0

2

n0
�n0 +

�2�s

4�e
�A − �p0

2 e2�A�2

2m2c4A = 0.

�10�

In the presence of two laser beams, we divide the vector
potential into two parts according to A=A1+A2 so that
�A�2= �A1�2+ �A2�2+2A1 ·A2. If A1 ·A2�0, there will be beat
waves in the plasma on the sum and difference frequencies
��+=�1+�2 and ��−=�1−�2 and the respective wave vec-
tors �k+=k1+k2 and �k+=k1−k2. This is frequently used in
beat-wave acceleration of electrons �23� and ionospheric
heating experiments �35,36�, where two electromagnetic
waves are used to drive resonantly Langmuir or upper-hybrid
waves whose frequencies and wave vectors equal the differ-
ence frequencies and wave vectors of the two electromag-
netic waves �37�. Here, we will assume that A1 ·A2� �A1�2
+ �A2�2 and that the beat frequency is far away from any
eigenmodes in the plasma, so that the cross-coupling term
A1 ·A2 can be neglected. Hence, from �10� we obtain the two
coupled electromagnetic wave equations
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� �2

�t2 − c2�2�A j +
�p0

2

n0
�n0 +

�2�s

4�e
�A j

−
�p0

2 e2

2m2c4 ��A1�2 + �A2�2�A j = 0, �11�

where j=1,2 for the two laser beams. Assuming that A j is
proportional to exp�ik j ·r− i� jt�, where � j� �� /�t�, we ob-
tain, in the slowly varying envelope approximation, the two
coupled nonlinear Schrödinger equations, namely,

2i� j� �

�t
+ vgj · ��A j + c2�2A j −

e

m
��2�s�A j

+
�p0

2 e2

2m2c4 ��A1�2 + �A2�2�A j = 0, �12�

where we used the laser frequency � j = ��p0
2 +c2kj

2�1/2, the
group velocity vgj =c2k j /� j, and the plasma electron fre-
quency �p0= �4�ne0e2 /m�1/2. Introducing �v f

2���e2 /
m2c2���A1�2+ �A2�2� into Eq. �6�, we have

	��2 − kDh
2 �

�2

�t2 + �pc
2 �2
�s

=
e

2mc2��pc
2 �2 − kDh

2 �2

�t2���A1�2 + �A2�2� . �13�

Equations �12� and �13� are the desired set governing the
nonlinear couplings between two colliding laser beams and
EA perturbations in a two-electron plasma with fixed ion
background.

Nonlinear dispersion relation

We now investigate the parametric instabilities of two la-
ser beams that are nonlinearly interacting with the EA per-
turbations. Accordingly, we Fourier analyze �12� and �13�
by assuming that �s= �̂sexp�−i�t+ iK ·r�� complex conju-
gate, while A j = �A j0+A j+exp�iK ·r− i�t�+A j−exp�−iK ·r
+ i�t��exp�−i�0t�, where �A j0 � � �A j±�. Sorting out for dif-
ferent powers of exp�iK ·r− i�t�, we obtain from �12� the
nonlinear frequency shift

� j0 = −
�p0

2 e2

4� jm
2c4 ��A10�2 + �A20�2� , �14�

and from Eqs. �6� and �12� we have a system of equations

D1+X1+ + Q�A10�2�X1+ + X1− + X2+ + X2−� = 0, �15a�

D1−X1− + Q�A10�2�X1+ + X1− + X2+ + X2−� = 0, �15b�

D2+X2+ + Q�A20�2�X1+ + X1− + X2+ + X2−� = 0, �15c�

D2−X2− + Q�A20�2�X1+ + X1− + X2+ + X2−� = 0, �15d�

where the unknowns are X1+=A10
* ·A1+, X1−=A10·A1−

* , X2+
=A20

* ·A2+, and X2−=A20·A2−
* . The coupling constant is

Q =
�p0

2

2 
1 +
K2c2

�p0
2

�kDh
2 �2 − �pc

2 K2�
��K2 + kDh

2 ��2 − �pc
2 K2�� , �16�

and the sidebands of the laser light are characterized by

Dj± = ± 2�� j� − c2k j · K� − K2c2, �17�

where we have used that vgj =ck j /� j.
Elimination of the unknowns from the system of equa-

tions �15� yields the nonlinear dispersion relation

1

Q
+ � 1

D1+
+

1

D1−
��A10�2 + � 1

D2+
+

1

D2−
��A20�2 = 0,

�18�

which relates the complex-valued frequency � to the wave
number K. Equation �18� covers the modulational instability
as well as the wave backscattering instability against the EA
perturbations. If either �A10� or �A20� is zero, then we recover
the usual expressions for a single laser beam in a plasma.

III. NUMERICAL RESULTS

We have numerically solved the nonlinear dispersion re-
lation �18� and presented our results in Figs. 1–3, where we
have used the weakly relativistic pump wave amplitudes
e �Aj0 � /mc2=0.1 with different sets of wave numbers for the
two laser beams. For the scattering instabilities to be effec-
tive, we need to consider parameters for which the excited
electron-acoustic wave is not strongly Landau damped. The
criteria for linear electron-acoustic waves not to be strongly
Landau-damped via wave-particle interactions have been
found to be Tc /Th	0.1 and nc0 /n0	0.8 �38,39�. In all cases,
we used nc0=0.7n0, nh0=0.3n0, and VTh=0.05c, where VTh
= �Th /m�1/2 is the thermal speed. In Fig. 1, we have assumed
a single beam A1 �with A2=0� that propagates in the y direc-

FIG. 1. �Color online� The growth rate � /�p0 as a function of
the wave numbers Ky and Kz, for a single laser beam A1 propagat-
ing in the positive y direction with the wave number �k1y ,k1z�
= �0.8,0��p0 /c, having the amplitude e �A10 � /mc2=0.1. We used
nc0=0.7n0, nh0=0.3n0, and VTh=0.05c.
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tion, with the wave number �k1y ,k1z�= �0.8,0��p0 /c. For this
case, we have a modulational and/or filamentation instability
at small wave numbers, visible as a symmetric instability
region near the origin in Fig. 1. We also have a parametric
three-wave coupling for larger wave numbers, which essen-
tially obeys the matching conditions � j =�s+� and k j =ks
+K, where � j and k j are the frequency and the wave vector

of the electromagnetic pump wave, �s and ks are the fre-
quency and the wave vector of the scattered and/or frequency
downshifted electromagnetic daughter wave, � and K are
the frequency and the wave vector of the EA perturbations,
and where the light waves approximately obey the linear
dispersion relations � j = ��p0

2 +kj
2c2�1/2 and �s= ��p0

2

+ks
2c2�1/2, while the EA perturbations follow the dispersion

relation �=�pcK / �K2+kDh
2 �1/2. We thus have the matching

condition ��p0
2 +kj

2c2�1/2= ��p0
2 + �k j −K�2c2�1/2+�pcK / �K2

+kDh
2 �1/2, which in two dimensions relates the components Ky

and Kz of the electron-acoustic perturbations to each other,
and which gives rise to narrow regions of instability for
larger wave numbers, as seen in Fig. 1. This instability has
a maximum growth rate ��2�10−3�p0 at �Ky ,Kz�
��1.3,0��p0 /c. For larger values of the pump wave number
k1y, the three-wave decay instability turns into a backscatter-
ing instability with a maximum growth rate at Ky �2k1y, and
one also would have to take into account the Raman forward
and backward scattering instabilities if the frequency of the
laser beam is larger than twice the plasma frequency. The
situation becomes more complex in the case of two coupled
laser beams, as considered in Figs. 2 and 3. In Fig. 2, the two
laser beams have the wave numbers �k1y ,k1z�= �0.8,0��p0 /c
and �k2y ,k2z�= �0,0.8��p0 /c, so that they propagate perpen-
dicularly to each other. Here, we see new instabilities due to
the parametric couplings between the two laser beams, which
are visible as almost circular instability regions in Fig. 2. The
largest growth rates now occur at �Ky ,Kz���0.8,
−0.8��p0 /c and �Ky ,Kz���−0.8,0.8��p0 /c, and we can also
see maxima in the growth rate for small wave numbers at
�Ky ,Kz���0.1,0.1��p0 /c. The case of two counter-
propagating laser beams is illustrated in Fig. 3, where the
two laser beams have the wave numbers �k1y ,k1z�
= �0.8,0��p0 /c and �k2y ,k2z�= �−0.8,0��p0 /c. Here, we see
that the maximum growth rates are for wave vectors in the
same directions as the beams, at �Ky ,Kz���1.6,0��p0 /c and
�Ky ,Kz���−1.6,0��p0 /c.

In order to investigate the dynamics of nonlinearly inter-
acting laser beams in a two-electron plasma, we have per-
formed numerical simulations of the system of Eqs. �12� and
�13� in two spatial dimensions, and have displayed the re-
sults in Fig. 4. As an initial condition, we used that both A1
and A2 have constant amplitudes of 0.1mc2 /e, and are propa-
gating perpendicularly to each other. Due to symmetry rea-
sons, it is sufficient to simulate one vector component of A j,
which we denote Aj �j=1,2�. The background plasma den-
sity is slightly perturbed with a low-level noise �random
numbers�. In Fig. 4, we have considered two laser beams that
are propagating perpendicularly to each other, corresponding
to the case illustrated in Fig. 2. Here we see growing waves
that are propagating obliquely to both laser beams, in corre-
spondence to the instability analysis of Fig. 2; these waves
have wavelengths of �5c /�p0 corresponding to a wave
number of size �1.2, in agreement with the fastest growing
waves in Fig. 2. During the exponential growth phase at t
=3750�p0

−1 �the middle row of panels in Fig. 4�, the laser
beams A1 and A2 are strongly correlated with each other, and
the potential � have maxima �corresponding to electron den-
sity minima� where the amplitudes of A1 and A2 have

FIG. 2. �Color online� The growth rate � /�p0 as a function of
the normalized wave numbers Kyc /�p0 and Kzc /�p0, for two
coupled laser beams A1 and A2 propagating in the positive y and
z directions, respectively, with wave numbers �k1y ,k1z�
= �0.8,0��p0 /c and �k1y ,k1z�= �0,0.8��p0 /c, respectively. Each
beam has the amplitude e �A10 � /mc2=e �A20 � /mc2=0.1. We used
nc0=0.7n0, nh0=0.3n0, and VTh=0.05c.

FIG. 3. �Color online� The growth rate � /�p0 as a function of
the normalized wave numbers Kyc /�p0 and Kzc /�p0, for two
counter-propagating laser beams A1 and A2 propagating in the posi-
tive and negative y directions, respectively, with wave numbers
�k1y ,k1z�= �0.8,0��p0 /c and �k1y ,k1z�= �−0.8,0��p0 /c, respectively.
Each beam has the amplitude e �A10 � /mc2=e �A20 � /mc2=0.1. We
used nc0=0.7n0, nh0=0.3n0, and VTh=0.05c.
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maxima. In the nonlinearly saturate phase, illustrated at time
t=6250�p0

−1 �the lower row of panels in Fig. 4�, the two laser
beams are no longer correlated, i.e., A1 and A2 do not have
maxima at the same locations in space. The potential � ex-
hibit maxima where either A1 or A2 have their amplitude
maxima. We note that the instability investigated here is dif-
ferent from the backscattering instability by a single laser
beam. While the backscattering instability typically gives
rise to electrostatic waves that are propagating in the same
direction as the wave vector of the waves, the waves in Fig.
4 have almost zero phase speed along the wave vector. In-
stead, the groups of waves are propagating along the wave
fronts from the lower left to the upper right parts of the
panels in Fig. 4. Hence these waves will not trap particles in
the same manner as for the backscattering instability consid-

ered by other authors �2,13� and new and interesting phe-
nomena may occur on a kinetic level.

IV. SUMMARY

In summary, we have considered nonlinear interactions
between two colliding intense laser beams and EA perturba-
tions in a two-electron plasma containing high- and low-
energy electrons. Such plasmas are frequently found in both
laboratories and space, and show new features of nonlinear
laser-plasma interactions in laboratory experiments. Our in-
vestigation of nonlinearly coupled two laser beams and EA
perturbations reveals, to the best of our knowledge, that there
are new classes of parametric instabilities, which are respon-
sible for standing wave patterns that are absent for a single
laser beam interacting with the plasma. It should be stressed
that the two-fluid model for electron-acoustic perturbations
in a collisionless plasma is valid for VTc ����� /�t�VTh ���,
where VTc �VTh� is the thermal speed of the cold �hot� elec-
tron component. This approximation remains intact if
nec /n0	0.8 and Tc /Th	0.1 �38,39�. Alternatively, one has
to resort to a Vlasov treatment �including the radiation pres-
sure� for the two-electron components participating in the
electron-acoustic wave dynamics. However, this is beyond
the scope of the present investigation.

The present results are thus useful in understanding the
nonlinear propagation of two colliding electromagnetic
beams in laser plasma experiments as well as in space plas-
mas on short time scales so that the ions do not have time to
respond to laser beams and EA perturbations. Specifically,
the nonlinear instabilities �both modulational and filamenta-
tion� of two coupled laser beams can produce light pipes that
may cause local electron heating in a two-electron plasma.
Hopefully, our theoretical and simulation results could be
verified in forthcoming experiments devoted to laser-plasma
interactions.
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